Zebrafish relatively relaxed mutants have a ryanodine receptor defect, show slow swimming and provide a model of multi-minicore disease.

نویسندگان

  • Hiromi Hirata
  • Takaki Watanabe
  • Jun Hatakeyama
  • Shawn M Sprague
  • Louis Saint-Amant
  • Ayako Nagashima
  • Wilson W Cui
  • Weibin Zhou
  • John Y Kuwada
چکیده

Wild-type zebrafish embryos swim away in response to tactile stimulation. By contrast, relatively relaxed mutants swim slowly due to weak contractions of trunk muscles. Electrophysiological recordings from muscle showed that output from the CNS was normal in mutants, suggesting a defect in the muscle. Calcium imaging revealed that Ca(2+) transients were reduced in mutant fast muscle. Immunostaining demonstrated that ryanodine and dihydropyridine receptors, which are responsible for Ca(2+) release following membrane depolarization, were severely reduced at transverse-tubule/sarcoplasmic reticulum junctions in mutant fast muscle. Thus, slow swimming is caused by weak muscle contractions due to impaired excitation-contraction coupling. Indeed, most of the ryanodine receptor 1b (ryr1b) mRNA in mutants carried a nonsense mutation that was generated by aberrant splicing due to a DNA insertion in an intron of the ryr1b gene, leading to a hypomorphic condition in relatively relaxed mutants. RYR1 mutations in humans lead to a congenital myopathy, multi-minicore disease (MmD), which is defined by amorphous cores in muscle. Electron micrographs showed minicore structures in mutant fast muscles. Furthermore, following the introduction of antisense morpholino oligonucleotides that restored the normal splicing of ryr1b, swimming was recovered in mutants. These findings suggest that zebrafish relatively relaxed mutants may be useful for understanding the development and physiology of MmD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy.

The skeletal muscle ryanodine receptor is an essential component of the excitation-contraction coupling apparatus. Mutations in RYR1 are associated with several congenital myopathies (termed RYR1-related myopathies) that are the most common non-dystrophic muscle diseases of childhood. Currently, no treatments exist for these disorders. Although the primary pathogenic abnormality involves defect...

متن کامل

The beta 1a subunit is essential for the assembly of dihydropyridine-receptor arrays in skeletal muscle.

Homozygous zebrafish of the mutant relaxed (red(ts25)) are paralyzed and die within days after hatching. A significant reduction of intramembrane charge movements and the lack of depolarization-induced but not caffeine-induced Ca(2+) transients suggested a defect in the skeletal muscle dihydropyridine receptor (DHPR). Sequencing of DHPR cDNAs indicated that the alpha(1S) subunit is normal, wher...

متن کامل

Acetylcholine and calcium signalling regulates muscle fibre formation in the zebrafish embryo.

Nerve activity is known to be an important regulator of muscle phenotype in the adult, but its contribution to muscle development during embryogenesis remains unresolved. We used the zebrafish embryo and in vivo imaging approaches to address the role of activity-generated signals, acetylcholine and intracellular calcium, in vertebrate slow muscle development. We show that acetylcholine drives i...

متن کامل

A homozygous splicing mutation causing a depletion of skeletal muscle RYR1 is associated with multi-minicore disease congenital myopathy with ophthalmoplegia.

The ryanodine receptor (RYR1) is an essential component of the calcium homeostasis of the skeletal muscle in mammals. Inactivation of the RYR1 gene in mice is lethal at birth. In humans only missense and in-frame mutations in the RYR1 gene have been associated so far with various muscle disorders including malignant hyperthermia, central core disease and the moderate form of multi-minicore dise...

متن کامل

Mutation of zebrafish dihydrolipoamide branched-chain transacylase E2 results in motor dysfunction and models maple syrup urine disease

Analysis of zebrafish mutants that demonstrate abnormal locomotive behavior can elucidate the molecular requirements for neural network function and provide new models of human disease. Here, we show that zebrafish quetschkommode (que) mutant larvae exhibit a progressive locomotor defect that culminates in unusual nose-to-tail compressions and an inability to swim. Correspondingly, extracellula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 134 15  شماره 

صفحات  -

تاریخ انتشار 2007